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SUMMARY

In this paper, the locally conservative Galerkin (LCG) method (Numer. Heat Transfer B Fundam. 2004;
46:357–370; Int. J. Numer. Methods Eng. 2007) has been extended to solve the incompressible Navier–
Stokes equations. A new correction term is also incorporated to make the formulation to give identical
results to that of the continuous Galerkin (CG) method. In addition to ensuring element-by-element
conservation, the method also allows solution of the governing equations over individual elements,
independent of the neighbouring elements. This is achieved within the CG framework by breaking the
domain into elemental sub-domains. Although this allows discontinuous trial function field, we have carried
out the formulation using the continuous trial function space as the basis. Thus, the changes in the existing
CFD codes are kept to a minimum. The edge fluxes, establishing the continuity between neighbouring
elements, are calculated via a post-processing step during the time-stepping operation. Therefore, the
employed formulation needs to be carried out using either a time-stepping or an equivalent iterative scheme
that allows post-processing of fluxes. The time-stepping algorithm employed in this paper is based on the
characteristic-based split (CBS) scheme. Both steady- and unsteady-state examples presented show that
the element-by-element formulation employed is accurate and robust. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The conservation of the finite element method has been the topic of discussion for many investi-
gators over the last several years [1–6]. Although the standard Galerkin form is implicitly locally
conservative [5], its explicit application was put to practice only recently [7–9]. Explicit use of
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the element-wise conservation properties gives control over individual elements and their bound-
aries. Such control has several advantages in computational mechanics. For example, control over
individual elements allows local problems to be solved, and thus it can be a useful tool for multi-
scale or multiresolution mechanics calculations. Control over element interfaces or edges gives the
flexibility of introducing interface discontinuities. Also, such a control will be extremely useful in
difficult problems of interest such as conjugate heat transfer [10], porous medium–fluid interface
[11] and fluid–structure interaction [12].

Over the last 10 years, the Discontinuous Galerkin Method (DGM) [13–25] has been developed
to remedy some of the drawbacks of the continuous (or global) Galerkin method. The DGM
naturally allows element-by-element solution and thus can be easily paralised. The element-by-
element solution, independent of the surrounding elements, allows independent, element-based
change in the order of interpolation polynomials. The DGM is naturally element-wise conservative,
and discontinuity capturing at domain interfaces is automatic. The DGM method can be highly
accurate due to the above properties. However, these favourable properties come with the penalty
of excessive number of degrees of freedoms and therefore more expensive than the continuous
Galerkin (CG) (global) method. Thus, it is not surprising that researchers are looking for a DGM
with a structure of CG (global) method [6]. We have adopted an approach, in which we can
reintroduce the interface fluxes within the CG (global) framework [7, 8]. This way existing industrial
fluid dynamic codes can be modified to accommodate the changes without resorting to complete
revision of the codes. The reintroduction of the edge fluxes not necessarily has to break the trail
function spaces but can be constructed within the continuous framework. However, via a post-
processing approach the solution can be sought element-by-element. Such a method is identical to
the CG or stabilized CG (global) methods under certain conditions [7–9] such as steady state. Away
from such conditions, results deviate from that of GG results, especially when both convection
and diffusion are used and transient solutions are sought. Thus, in addition to the standard locally
conservative Galerkin (LCG) introduced in the past [7–9], we have also introduced a correction
term to obtain identical results to that of GG method here. The LCG method used here is both
locally and globally conservative and maintains many of the advantages that DGM offers, but at
a lower cost. The only constraint of the method is that some form of iterative procedure (such as
time stepping) is essential to obtain a post-processed flux after every iteration. This is not a great
disadvantage, as some form of iterative procedure is essential for solving the N–S equations with
many other type of solution strategies.

In the LCG method presented here, a time-stepping algorithm is coupled with a post-processing
stage, in which all the necessary fluxes are computed from the previous time-step solution. Thus,
the modifications needed for any existing GG codes in space–time frame are little. The changes
needed for solving the system, element-by-element, are also straightforward. Since the standard
finite element assembly is completely eliminated in the LCG procedure, the elemental matrices
may be computed, inverted and stored at the pre-processing stages of a computation. Often these
matrices are functions of the element property, such as area. Such properties normally do not change
in an Eulerian frame of reference, and thus, control over individual elements gives a great deal
of freedom to optimize memory requirement. Majority of the LCG forms, especially the implicit
discretization, are much faster than their CG (or global) counterparts [7, 8]. In our previous works,
we have demonstrated the LCG method’s equivalence to the global Galerkin method [7, 8]. It was
also demonstrated that how stabilized LCG forms can be constructed and employed. However,
the problems of interest in the previous articles were pure diffusion and convection–diffusion,
and the suitability of the LCG method for the solution of the Navier–Stokes equations was not
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considered. In the present work, we address the extension of the LCG method to the Navier–Stokes
equations and also discuss the implementation in detail. We also introduce an important change
to the standard LCG formulation to obtain identical solution to that of stabilized CG methods.

The paper is organized as follows. In Section 2, the governing equations and their temporal
discretization, using the characteristic-based split (CBS) scheme, are briefly introduced. The LCG
spatial discretization of the semi-discrete equations are discussed in Section 3. The discussion
in Section 3 includes matrices arising from the spatial discretization and edge-flux calculation,
and it also introduces a brief summary of local and dual time-stepping procedures. Numerical
examples are provided in Section 4 to demonstrate the validity and accuracy of the LCG method
for incompressible flows. These examples consist of the classic steady-state problems of lid-driven
cavity flow and unsteady flow past a circular cylinder. All the results obtained are thoroughly
analysed and compared with the CG (global) method and other available results wherever possible.
Finally, in Section 5, some important conclusions are derived.

2. GOVERNING EQUATIONS AND THE CBS SCHEME

2.1. The Navier–Stokes equations for incompressible flow

The artificial compressibility-based Navier–Stokes equations may be expressed as
Continuity:
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where ui are the cartesian components of the velocity vector, � is the fluid density, p represents the
pressure and � is an artificial compressibility parameter [26–32]. The deviatoric stress components
�i j are related to velocity gradients by
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where � is the dynamic viscosity. The non-dimensional form of Equations (1) and (2) are
rewritten as

Continuity:
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where
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Here, Re is the Reynolds number, the subscript ‘∞’ indicates a reference quantity and L is a
reference length. The problem definition is completed by selecting appropriate initial and boundary
conditions.

2.2. Semi-discrete form of the CBS scheme

The CBS scheme is a well-established algorithm in the CG (or global) context for both incompress-
ible and compressible flow simulations [29, 33, 34]. The artificial compressibility form has been
incorporated into the CBS family in 2003 and has been successfully used since [26, 27, 32, 35, 36].
For a recent, up to date account on the progress of the CBS scheme, the reader is referred to [31].
The analysis of the artificial compressibility form may be found in [32].

The present work couples the semi-discrete CBS scheme with the LCG spatial discretization
procedure to obtain an element-wise solution strategy. The CBS approach adopted in this work,
starts with a solution to an auxiliary intermediate velocity field. This intermediate velocity field is
corrected, once the pressure field is obtained from a pressure (continuity) equation. By dropping
the pressure term, Equation (5) becomes (asterisks are dropped for simplicity)
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where ‘†’ indicates the intermediate velocity field. To incorporate the LCG spatial discretization,
Equation (7) is rewritten as
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where the flux term, Fi j , is defined as
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Applying the simple explicit characteristic temporal discretization [37] to Equation (8) gives
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This forms the first step of the LCG-CBS scheme. The correct value of un+1
i is given by
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which is the third step of the scheme. Before the velocity correction can be applied, the pressure
has to be calculated independently from another source in the second step. The pressure equation
used is based on the continuity relation given by Equation (4)

1
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�t
=−�

�un+1
i

�xi
(12)

The un+1
i term appearing in this equation has to be eliminated, as it is unknown. Using Equation

(11) and neglecting terms higher than second order, the pressure equation becomes
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Equation (13) is the second step of the scheme. It has been derived by assuming the presence
of a pseudo-compressibility in the continuity equation. This way it is possible to keep the fully
explicit nature of the scheme. An artificial compressibility parameter, �, has been successfully used
in the literature [26–32, 35, 38]. The value of � can be given as a constant throughout the domain,
but the recommended approach, which is adopted here, is to calculate � locally, based on both
convective and diffusive time-step restrictions [26, 27, 29]. This gives not only a scheme that is
suitable for different Reynolds numbers but also more importantly it accommodates different flow
regimes (convection and diffusion dominated) within a problem at a particular Reynolds number.
In this work, the relation

�=max(�,�conv,�diff) (14)

is employed. The constant �, appearing in Equation (14), ensures that � does not approach zero
and typically takes the value of 0.1���0.5. �conv is the local convective velocity and �diff is the
local diffusive velocity. These velocities are calculated from the non-dimensional relations [26],

�conv=√
uiui , �diff= 1

hRe
(15)

The three steps of the LCG-CBS scheme may be summarized as:

1. Solve for the intermediate velocity field, u†i , using Equation (10).
2. Solve for the pressure field, p, using Equation (13).
3. Solve for the correct velocity field, ui , using Equation (11).

3. LCG SPATIAL DISCRETIZATION

In this section, Equations (10), (13) and (11) are discretized in space using the LCG finite element
procedure [7–9]. As with the global Galerkin form, the variation of each of the variables is
approximated by the standard finite element spatial discretization as

ui ≈ ũi =Nui and p≈ p̃=Np (16)

where N are the shape functions. The CBS scheme adopted circumvents the LBB condition when
the pressure gradient is removed from the momentum equation [29, 33]. This allows an arbitrary
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choice of shape functions to be made for approximating the velocity and pressure fields. Here, all
variable approximations use identical shape functions. The optimal choice of weighting function for
the semi-discrete equations is the Galerkin weighting, wa =Na , when using a CBS discretization
[29]. In an LCG discretization, the need for breaking the trial function spaces never arises unless
such breaking of spaces is needed. However, the domain can be broken into elemental subdomains,
thanks to the post-processed flux. To make the presentation brief, we provide only the discretization
over broken elemental subdomains.

With the Galerkin weighting, the integral form of the first step may be expressed as

∫
�e

Na
�ũ†i
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Integration by parts gives the following weak form:∫
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In the LCG method, the boundary terms are replaced with a numerical flux, ˆ̃Fi j and � ˆ̃Fi j/�x j ,
calculated at time (n) on the element boundaries. Neglecting third- and higher-order terms, the
final matrix form of the first step is
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In a similar fashion, the weighted residual form of the second step may be expressed as∫
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and the weak form is∫
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The final matrix form of the second step is
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The weighted residual and weak forms of the third step are
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†
i d�e−�t

∫
�e

Na

(
� p̃
�xi

)n

d�e

+
∫

�e

Na
�t2

2
uk

�
�xk

(
� p̃
�xi

)n

d�e (25)

and ∫
�e

Naũ
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The final matrix form of the third step is

[M3e]{ui}n+1=[M3e]{ui}†+�t ([K3e]{p}−[K3cge ]{p}+{f3e})n (27)
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The matrices used in the above equation are defined as
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∫
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The third- and higher-order terms are neglected from all the equations for simplicity.

3.1. Calculation of edge fluxes

To satisfy local conservation, the flux crossing a common edge shared by two elements is made
equal and forced to act in opposing directions as shown in Figure 1. Using the computed edge
flux on the element boundaries of adjoining elements, the following condition is enforced:

Fe1ne1+Fe2ne2=0 (29)

where Fe1=Fe2, and ne1 and ne2 are the outward normals from the edges of the respective
elements. The subscripts are defined in Figure 1.

All that is needed now to enforce the condition given by Equation (29) is a small post-processing
calculation to be made at the end of each time-step. This is possible once a globally continuous
solution is recovered from the previous time-step. The post-processing calculation uses the nodal
values of the continuous solution and its gradients to provide an accurate interface flux. It is this
flux that establishes connectivity between elements at the next time-step.

For linear triangular finite elements, the gradient of the variable is a constant within each
element. The standard procedure to obtain a nodal approximation of the variable’s gradient, when
using linear elements [7–9, 39], is to compute a mean average of the constant gradients over the

Fe1 n e1

e1

e2

Fe2 n e2

Figure 1. Flux crossing a common edge between two elements.
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Figure 2. A patch of linear elements. Element-averaged gradient calculation
of the scalar variable at node a.

elements surrounding a node of interest. For example, a gradient value of a scalar variable �, at
node a in Figure 2, may be computed as(

�̂�

�xi

)
a

= 1

ne

ne∑
e=1

(
��

�xi

)
e

(30)

These nodal gradient values are then used to estimate the diffusive component of flux crossing
the edges as an average of the two nodal values forming an edge.

3.2. Correction factor for the LCG formulation

In principle, the equal and opposite fluxes introduced at the interfaces of the elements will cancel
each other when the solution is averaged over a node for a steady-state problem. However, for
transient problems, a small difference in the flux terms due to the mass matrix may exist on
non-uniform meshes. This needs to be corrected by adding the difference between the opposite
fluxes on the element edges.

The only other difference between the GG and the LCG equations described here is the differ-
ences in the use of the mass matrix. In order for the LCG method to produce the same results to that
of the CG method, a correction factor based on this difference must be implemented. Without this
correction, the formulation may not give the results identical to that of the GG formulation. This
section details the correction factor utilized for a case where a lumped mass matrix is employed.

The LCG elemental equation for step 1 is repeated for clarity from (19):

{ui†}={uin}+�t[M1e]−1([K1e]{ui}+[K1cge ]{ui}+{f̂1e}) (31)

Examining a nodal equation and noting that the LCG method produces multiple solutions at a
node and that an arithmetic mean is employed to produce a single solution, the equation for node
a is

{u†ia}={unia}+
1

ne
�t[M1e]−1([K1e]{ui}+[K1cge ]{ui}+{f̂1e}) (32)

where ne is the number of elements connected to node a. Since [M1e] is assumed to be lumped,
this is not a matrix in the above equation but a number and it is a function of the element size.
The corresponding CG method (interior node) is of the form

{u†ia}={unia}+�t[M1]−1([K1e]{ui}+[K1cge ]{ui}) (33)
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where [M1] is the sum of the individual elemental lumped mass matrix contributions. Comparison
between Equations (32) and (33) clearly shows that the difference is in the use of the mass matrix.
Thus, a correction of the type(

�t[M1]−1− 1

ne
�t[M1e]−1

)
([K1e]{ui}+[K1cge ]{ui}) (34)

is added to Equation (32) to obtain results identical to that of the GG formulation for inside
nodes. For the global boundary nodes, the results of the two methods differ if Dirichlet boundary
conditions are used. However, they are identical if Newmann conditions are employed. The above
correction is especially important when transient problems are solved. The correction factors can
be determined at a pre-processing stage for cases involving the Eulerian form of reference. The
correction is identical for all the three steps if the explicit CBS scheme is employed.

3.3. Local time stepping

The local time-step at each node a for the artificial compressibility method is given by

�ta =min

(
ha√

uiui +�
,
h2Re

2

)
(35)

where ha is the local element-size at node a. Generally, ha is calculated in two dimensions as the
minimum size of all the surrounding elements [29], e, i.e.

ha =min(2area/opposite side length)e (36)

The artificial compressibility parameter � in Equation (35) is calculated from Equation (14).
The inclusion of � in Equation (35) allows the artificial wave speed to be included into the local
time-step limit. The calculated �ta is in practice multiplied by a non-zero safety factor below
unity. The actual value of the safety factor depends on the problem being simulated and the mesh
used.

To examine the convergence of the artificial compressibility LCG-CBS scheme, the pressure
residual error of the solution is calculated using [26, 27]

error= 1

nnode

nnode∑
i=1

[
1

�2
pn+1− pn

�t

]2
(37)

where nnode is the total number of nodes in the mesh. The criterion for reaching steady state is
that this error should be reduced to a value of 1×10−7 or less.

3.4. Recovering a transient solution via a dual time-stepping approach

For the solution of transient incompressible-flow problems, a dual time-stepping procedure is
implemented. The method has been shown to be very successful for both pre-conditioned artificial-
compressibility, finite volume [28, 38, 40] and the global Galerkin fully-explicit CBS schemes
[26, 27, 29, 31, 32, 35].

To recover the true transient solution, a real-time term is added to the momentum equation. To
remain consistent with the global Galerkin CBS scheme, a real-time term is added to the third
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step [26, 27, 31, 32, 35]. The addition of a true transient term leads to the following modified third
step:

{ui}n+1={ui}†+[M3e]−1�t ([K3e]{p}−[K3cge ]{p}+{f3e})n−[M3e]−1 �t

��
{�ui}� (38)

where �� is the real time-step. When using the dual time-stepping scheme, local �t becomes a
(pseudo) time-step for an iterative mechanism. In order to obtain a second-order real-time accuracy,
{�ui}� is approximated with an implicit second-order backward-difference formula of the type

{ui}� = 3{ui}m+1−4{ui}m+{ui}m−1

2
(39)

In the above equation, {ui}m+1 is the nth pseudo-time level value within the pseudo-time loop,
{ui}m is the steady-state solution at the last real time-step and {ui}m−1 is the steady-state solution
at one real time-step before the last. Clearly, both the latter vectors need to be appropriately stored
at the end of each real time-step. Owing to the implicit nature of the scheme, the real time-
step size is unrestricted and only governed by the quality of the transient solution required. The
pseudo-time-step, however, is locally calculated and subjected to the usual stability conditions.

4. NUMERICAL EXAMPLES

4.1. Incompressible flow inside a lid-driven square cavity

The first problem considered is the incompressible fluid flow in a lid-driven cavity. The problem is
investigated for a range of Reynolds numbers including the case of Stokes flow (Re=0). Qualitative
results are given using linear elements and comparisons of the velocity profiles are made with
well-known benchmark data [41].

u1 = 0, u2 = 0 

L

L

u1 = 1, u2 = 0 

u1 = 0, 
u2 = 0

u1 = 0, 
u2 = 0

Figure 3. Flow in a square cavity. Geometry and boundary conditions.
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Figure 4. Flow in a square cavity. Meshes of linear elements were used in the
computations: (a) Mesh B and (b) Mesh C.

Figure 5. Stokes flow in a square cavity. Comparison of pressure distribution along mid-horizontal line.

The cavity geometry and boundary conditions are shown in Figure 3. No-slip boundary conditions
are applied to the cavity walls and the flow inside the cavity is generated by the motion of the top
surface, which travels in the horizontal direction. As the cavity is non-leaky, the singularities at
the top two corners make this problem difficult to solve.

A number of meshes were used in this study, Mesh A is a uniform structured mesh of 20 000
linear triangular elements and 10 201 nodes. Mesh B is a non-uniform structured grid, with 1521
linear elements and 2888 nodes, and Mesh C is an unstructured mesh consisting of 10 596 elements
and 5515 nodes. Meshes B and C are shown in Figure 4.

The case of Stokes flow is considered first, with all meshes being used in the study. To model
Stokes flow, the convection and characteristic terms in Step 1 (Equation (10)) and the characteristic
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Figure 6. Stokes flow in a square cavity. Comparison of the horizontal velocity
component along mid-vertical line.

Figure 7. Stokes flow in a square cavity. Comparison of the vertical velocity
component along mid-horizontal line.

term in Step 3 (Equation (11)) were switched off, also Re was set to unity and Step 2 was unaltered.
The above changes give a matrix-free fractional time-stepping scheme, similar in structure to that
described by Nithiarasu [35] for incompressible solid mechanics.

To provide a comparison of the accuracy of the pressure solution, the pressure along the mid-
horizontal line has been plotted in Figure 5 for each mesh. The global Galerkin results are also
plotted in this figure. As seen the agreement between the solutions obtained on Meshes A, B and
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Figure 8. Flow in a lid-driven cavity. Pressure contours: (a) Re=100; (b) Re=1000; and (c) Re=5000.

Figure 9. Flow in a lid-driven cavity. Streamtrace contours: (a) Re=100; (b) Re=1000; and (c) Re=5000.

C is excellent. The velocities plotted along the vertical and horizontal centrelines are shown in
Figures 6 and 7. Again, the results show that the results on Meshes A, B, and C are in excellent
agreement with each other and with the GG solution.

The lid-driven cavity problem is also solved at Re=100,400, 1000, 2000, 3200 and 5000. The
results for some selected Reynolds numbers are given in Figures 8–11. Pressure contours are given
in Figure 8 and stream-trace plots are given in Figure 9 for different Reynolds numbers on the
Mesh C. The contours are generally smooth and are without any major oscillations. Other meshes
employed have also produced similar results.The results shown in Figures 8 and 9 are in very good
agreement with GG solution and also with other methods. It is important to note that at Re=5000
the expected secondary recirculation at the bottom right corner is clearly predicted. This shows
that the method presented is robust.

For a quantitative evaluation of the performance of the CBS-LCG scheme, the velocity compo-
nents along the mid centrelines are compared with the benchmark solution by Ghia et al. [41]. The
velocity distributions at various Reynolds numbers are given in Figures 10 and 11 for Mesh B.
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Figure 10. Flow in a lid-driven cavity. Comparison with Ghia et al. [41] of u1 velocity distribution along
the vertical centreline: (a) Re=100; (b) Re=1000; (c) Re=3200; and (d) Re=5000.

Overall, there is a good agreement between the LCG, GG methods and benchmark numerical
solutions. The small deviation of the peak value at Re=5000 may be attributed to the degree of
refinement used in the mesh.

4.2. Unsteady flow past a circular cylinder

In this subsection, the analysis is extended to investigate unsteady vortex shedding behind a circular
cylinder at Re=100. As already discussed, the LCG-CBS scheme in its fully explicit nature is
only suitable for steady-state solutions. However, the true transient solution is recovered here by
using a dual time-stepping method [26–29, 31, 38, 40], which is incorporated into the LCG-CBS
scheme.

The incompressible flow past a circular cylinder has been a popular test case for validating the
transient part of numerical schemes [26, 27, 29, 32, 38, 42]. Figure 12 gives the problem statement
and geometry. The computational domain is 16D in length and 8D in width. The centre of the
cylinder is located at a distance of 4D from the inlet, along the centre line. At the inlet boundary,
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Figure 11. Flow in a lid-driven cavity. Comparison with Ghia et al. [41] of u2 velocity distribution along
the vertical centreline: (a) Re=100; (b) Re=1000; (c) Re=3200; and (d) Re=5000.

Symmetry

Exit:
p = 0 

Symmetry

12D

8D

4D

Inlet:
u1 = 1 
u2 = 0 

D

No slip on cylinder surface
u1 = 0, u2 = 0 

Figure 12. Unsteady flow past a circular cylinder. Geometry and boundary conditions.
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Figure 13. Unsteady flow past a circular cylinder at Re=100. Unstructured
mesh used in the computations.

the horizontal and vertical velocity components are prescribed as unity and zero, respectively.
At the exit, the pressure is set equal to zero. Slip conditions are imposed at the top and bottom
extremities. The only solid surface in the domain is that of the cylinder and no-slip conditions are
prescribed on it. At t=0, the initial conditions everywhere are: horizontal velocity is unity and
both the vertical velocity and pressure are zero.

A single unstructured mesh was used in this study and it is shown in Figure 13. It has 19 650
elements and 9988 nodes. This mesh has been designed using previous knowledge on the formation
of the unsteady wake and subsequent vortex shedding [43, 44]. The real time-step size chosen for
this problem is 0.1 and simulations were carried out for a real non-dimensional time of 200. For
each real time step, the pressure residual, given by Equation (37), was allowed to reach a tolerance
of 1×10−7.

Some qualitative results are shown in Figure 14. Here, the contours of pressure and horizontal
and vertical velocities are shown at the real non-dimensional time of 150. The results shown clearly
indicate that the expected shedding patterns are obtained. These results are in close agreement
with other qualitative results [26, 27, 38] and the GG method.

A quantitative analysis of the results was also conducted and is shown in Figure 15. Here, the
real-time history of both the lift and drag coefficients are given along with the variation of the
vertical velocity component at the central exit point. Figure 15(a) and (b) shows the coefficient of
drag, cd, computed over the cylinder surface as a function of time. The full temporal history of cd
for 1�t�200 is given in Figure 15(a). Figure 15(b) shows a close-up view of the cd for 130�t�150.
Here, the global Galerkin results have been included for comparison. As seen, the difference is
negligible between the two results. Details of the coefficient of lift, cl, are shown in Figure 15(c)
and (d). The former gives the full real-time history and the latter gives a comparison with the global
Galerkin results 130�t�150. As seen the agreement here is excellent. The final set, Figure 15(e)
and (f), gives the real-time history of the vertical velocity component—computed at the centre-
point on the exit boundary. In Figure 15(f), the comparison with the global Galerkin results again
shows an excellent agreement. The average drag coefficient obtained here is approximately 1.5.
Previous studies, on a finer mesh, give an average drag coefficient value of 1.528 using orthogonal
subscale stabilization (OSS) [45] and 1.521 using the second order CBS scheme [32]. This again
shows that the results obtained using LCG method with the additional correction are in excellent
agreement with other results.
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Figure 14. Unsteady flow past a circular cylinder at Re=100. Computed solution at a non-dimensional
real time of 150. (a) Pressure contours, (b) u1 velocity contours, and (c) u2 velocity contours.
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Figure 15. Unsteady flow past a circular cylinder at Re=100. Computed coefficients of the drag and
lift, and computed vertical velocity component at central exit point. All are plotted as a function of the
non-dimensional real time. (a) Full history of drag coefficient cd, (b) comparison of cd with GG, (c) full
history of lift coefficient cl, (d) comparison of cl with GG, (e) vertical velocity component u2 at central

exit, (f) comparison of u2 at exit, with GG.
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5. CONCLUSIONS

The objective of this paper was to implement and demonstrate the locally conservative Galerkin
(LCG) method for incompressible flows. This has been successfully achieved. In addition to
implementation of the method, two benchmark examples were provided to demonstrate the accuracy
and robustness of the LCG method. In general, the accuracy of the method is excellent. We believe
that the LCG method has several advantages of the DGM but computing cost is lower. This is
possible due to a sensible combination of a post-processing step and a time-stepping algorithm.
Although, the LCG method presented here needs the formulation in space–time frame, this is not
a huge disadvantage as many algorithms do use iterative methods. The LCG method produces an
element-by-element solution, and further extension of the method to real practical problems with
interfaces is essential to bring out the real advantages of the LCG method. It will also be interesting
to extend the method to three-dimensional flow problems and to implicit time discretization.
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